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Abstract

This paper presents an exact solution for the stresses in an in_nite shape memory alloy plate with a circular
hole subjected to biaxial tensile stresses applied at in_nity[ The solution obtained by assumption of plane
stress is based on the two!dimensional version of the Tanaka constitutive law for shape memory materials[
The plate is in the austenitic phase\ prior to the application of external stresses[ However\ as a result of
tensile loading\ stress!induced martensite forms\ beginning from the boundary of the hole and extending
into the interior\ as the load continues to increase[ Therefore\ in a general case\ the plate consists of three
annular regions] the inner region of pure martensite\ the intermediate region where martensite and austenite
coexist\ and the outer region of pure austenite[ The boundaries between these annular regions can be found
as functions of the external stress[ Two methods of solution are presented[ The _rst is a closed!form approach
based on a replacement of the actual distribution of the martensitic fraction by a piece!wise constant function
of the radial coordinate[ The second method results in an exact solution obtained by assuming that the ratio
between the radial and circumferential stresses in the region where austenite and martensite coexist is
governed by the same relationship as that in the encompassing regions of pure austenite and pure martensite[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Problems of a stress distribution in plates with discontinuities represent a signi_cant interest
both for fundamental mechanics and in practical engineering[ One of the classical problems that
was considered in the sixties and seventies is an inelastic stress concentration in an in_nite plate
with a circular hole subjected to an equal biaxial tension[ Mentioned here are the papers of
Budiansky and Mangasarian "0859# and Budiansky "0860# who employed the J1 deformation
theory to obtain an exact solution for a stress concentration factor in elasto!plastic plates[ In the
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Fig[ 0[ The plate subjected to biaxial tension[

present paper\ the problem of a distribution of stresses in plates with a circular hole is extended to
the plates from shape memory materials subjected to an isothermal loading[ The process of
martensitic transformation considered in the paper is characterized by a nonlinear stressÐstrain
relationship\ i[e[ the classical elasticity solution becomes invalid[ However\ the paper illustrates a
closed!form solution that can be obtained by subdividing the plate into annular regions where the
martensitic fraction and e}ective stress remain constant[ In addition\ an exact solution is found
for the entire plate\ including the region where martensite and austenite coexist[ This solution is
obtained by assuming that the relationship between the radial and circumferential stresses in the
region of mixed martensite and austenite is governed by the same law as in the regions of pure
martensite and pure austenite[

1[ Analysis

Consider an in_nite plate from a shape memory material with a circular hole subjected to an
equal biaxial tension\ as shown in Fig[ 0[ The plate is assumed in the state of plane stress\ i[e[ only
the radial "sr# and circumferential "su# components of the stress tensor are present[ In the absence
of an external load\ the material is in the austenitic phase[ Then the load is gradually increased\
while the temperature is kept constant[ Eventually\ as the e}ective stress along the boundary of
the hole reaches a critical value\ the stress!induced martensitic transformation is triggered[ At a
certain value of the e}ective stress the material around the hole is entirely converted into martensite
and the plate consists of three regions] the inner martensitic region limited by a ³ r ³ rm\ the
intermediate region of martensite mixed with austenite within rm ³ r ³ ra and the outer austenitic
region at r × ra[

1[0[ Two!dimensional constitutive equations for shape memory alloys

The solution is based on the constitutive theory of Tanaka "0889# that was generalized by Boyd
and Lagoudas "0882# for a three!dimensional case[ According to this theory\ the constitutive
equations of a shape memory material can be written as
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s � C"o−aDT−ot# "0#

where s\ o and ot are vectors of stresses\ elastic strains and transformation strains\ respectively\ C
is a matrix of instantaneous elastic sti}nesses\ a is a vector of instantaneous coe.cients of
thermal expansion and DT is a variation of temperature from the stress!free reference value[ The
instantaneous sti}nesses and coe.cients of thermal expansion depend on the state variables\ i[e[
the strains\ temperature and the martensitic fraction j[

In the case where a phase transformation occurs without a reorientation of martensitic variants\
it is assumed that the rate of the transformation strain is proportional to the rate of change of the
martensitic fraction "Bondaryev and Wayman\ 0877^ Boyd and Lagoudas\ 0886#\ i[e[

dot � Ldj "1#

where L is a transformation tensor related to the deviatoric strain components[ Following the
paper of Birman et al[ "0855#\ the transformation tensor components are taken proportional to
the maximum transformation strain observed in a one!dimensional test[ Then eqn "1# can be
integrated and the axisymmetric plane stress constitutive relations for an isothermal loading
become]

sr � Crror¦Cruou−Lr "Crr¦Cru#j

su � Curor¦Cuuou−Lu"Cur¦Crr#j "2#

where\ if the material is isotropic\ Crr � Cuu � D\ Cru � Cur � nD\ D � D"o\ T\ j# is an instantaneous
elastic modulus\ and n is the Poisson ratio which is assumed to be constant[ In isotropic materials\
Lr � Lu � v and the constitutive law can be written as

sr � Dðor¦nou−v"0¦n#jŁ

su � Dðnor¦ou−v"0¦n#jŁ "3#

The inverse of eqn "3# is

or � "sr−nsu#:ð"0−n1#DŁ¦vj

ou � "su−nsr#:ð"0−n1#DŁ¦vj "4#

These constitutive equations must be considered together with the transformation kinetics and
the nucleation criterion[ According to Tanaka|s constitutive theory\ the transformation kinetics
equation corresponding to the martensitic transformation is]

j � 0−exp ðbM"MS>−T#¦"bM:dM#sŁ "5#

where s is an e}ective stress\ MS> is the martensite start temperature corresponding to the stress!
free state\ T is a current temperature\ and dM is a slope of the martensite transformation temperature
lines in the stress!temperature plane[ Note that in the present paper this slope is assumed identical
in the planes {{e}ective stress−temperature|| and {{one!dimensional stress−temperature||[ The
constant bM is a function of the martensite start and _nish "MF># temperatures in the absence of
stresses]

bM � ln 9[90:"MS>−MF># "6#
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The e}ective stress is chosen as in three!dimensional SMA constitutive theories of Liang and
Rogers "0880# and Boyd and Lagoudas "0882#]

s � ð"2:1#s?ijs?ijŁ0:1 "7#

where s?ij is a component of the deviatoric stress tensor[ In the present problem\ the e}ective stress
given by "7# becomes

s �"s1
r ¦s1

u−srsu#0:1 "8#

The conditions corresponding to the start of the martensitic transformation can be obtained
from the transformation kinetics eqn "5# with j � 9[ The transformation is assumed accomplished
when j � 9[88[ Accordingly\ the range of the e}ective stresses corresponding to the martensitic
transformation coincides with that for a one!dimensional problem\ i[e[

dM"T−MS># ³ s ³ dM ln 9[90:bM¦dM"T−MS># "09#

1[1[ Closed!form solution of the problem

When the e}ective stress is below the value given by the left side of inequality "09#\ the elastic
solution yields "Budiansky\ 0860#

sr � sð0−"a:r#1Ł

su � sð0¦"a:r#1Ł "00#

where r is a radial coordinate\ a is a radius of the hole and s is the stress applied at in_nity where
sr � su � s[ The martensitic transformation starts at the value of the external stress that can be
found from eqns "8# and "00# and the left side of inequality "09#]

s � dM"T−MS>#:"ð0¦2"a:r#3Ł0:1# "01#

Accordingly\ the transformation begins at the boundary of the hole when s �
dM"T−MS>#:1[ The transformation will spread over the entire plate when s � dM"T−MS>#[

Once the transformation has started\ additional external stresses will result in an expansion of
the region where the material is partially transformed into martensite[ At each value of s\ the
boundary between the region containing a mixture of austenite and martensite and the outer
austenitic region\ i[e[ ra\ is given by "01#[

The inner boundary of the austenitic region is shown in Fig[ 1 for three di}erent values of
temperature[ The properties of the material are "Lei and Wu\ 0880#]
DA � 29 GPa "modulus of elasticity of austenite#^ DM � 02 GPa "modulus of elasticity of mar!
tensite#^ n � 9[22^ MS> � 12>C^ MF> � 4>C^ dM � 00[2 MPa:>C^ v � 9[96[

The nondimensional variables in Fig[ 1 are]

S � 092 s:DA\ Ra � ra:a "02#

As follows from Fig[ 1\ for a prescribed value of the external stress\ the extent of the region
where the material has partially or completely converted into martensite decreases as the tem!
perature increases[ Of course\ this is a logical conclusion since it is well known that stress!induced
martensite can not be obtained at high temperatures "Wayman and Duerig\ 0889#[
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Fig[ 1[ The inner boundary of the region of pure austenite versus the external tensile stress[ Curve 0 ] T � 49>C\ curve
1 ] T � 39>C\ curve 2 ] T � 29>C[

Consider the region of the plate where the martensitic transformation has started[ A closed!
form solution can be obtained if the martensitic fraction is excluded from the constitutive eqn "4#[
The relationship between the rate of the martensitic fraction and that of the e}ective stress is
available from eqn "5# in the form

dj � kds "03#

where

k � −"bM:dM#exp ðbM"MS>−T#¦"bM:dM#sŁ "04#

From "8#\

ds � adsr¦bdsu "05#

where

a � "1sr−su#:"1s#

b � "1su−sr#:"1s# "06#

Then

dj � Adsr¦Bdsu "07#

where A � ka and B � kb[
Equation "07# can be integrated by assuming that A and B remain constant within narrow

annular regions of the plate[ Physically\ this implies a replacement of continuous functions A � A"r#
and B � B"r# with piece!wise constant functions[ Accordingly\ within a region {{i|| where
ri ³ r ³ ri¦0\
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j � Aisr¦Bisu "08#

Now eqn "4# can be represented as

or � "0:ð"0−n1#DŁ¦vAi#sr¦"−n:ð"0−n1#DŁ¦vBi#su

ou � "−n:ð"0−n1#DŁ¦vAi#sr¦"0:ð"0−n1#DŁ¦vBi#su "19#

where the modulus of elasticity is a function of state variables[ It is customary to assume that

D � DA¦j"DM−DA#[ "10#

Within ri ³ r ³ ri¦0\ the value of D can be assumed constant[ Then eqn "19# yields

or � S00sr¦S01su

ou � S10sr¦S11su "11#

where Smn � Smn"i# are constant compliances corresponding to region {{i||[
The equation of axisymmetric equilibrium is

sr\r¦"sr−su#:r � 9[ "12#

The inverse of eqn "11# is]

sr � C00or¦C01ou

su � C10or¦C11ou "13#

where the matrix of constant sti}nesses Cmn � Cmn"i# is obtained as an inverse of the matrix of
compliances Smn � Smn"i#[

The strain!radial displacement relationships are]

or � u\r ou � u:r "14#

where u are radial displacements[
Now the equation of equilibrium can be obtained in terms of radial displacements in the form

u\rr¦F0u\r:r−F1u:r1 � 9 "15#

where

F0 � 0¦"C01−C10#:C00

F1 � C11:C00 "16#

A closed!form solution of eqn "15# is available for each concentric annular region where the
martensitic fraction and\ accordingly\ the e}ective stress are assumed constant[ Then the terms F0

and F1 in eqn "15# are constant for the region[ The solution of eqn "15# for the i!th region is
"Kamke\ 0860#]

u � A0ir
m"i#¦A1ir

n"i# "17#

where A0i and A1i are constants of integration and
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m"i# � "0−F0i−mi#:1

n"i# � "0−F0i¦mi#:1

mi � ð"0−F0i#1¦3F1iŁ0:1 "18#

In eqn "18#\ F0i and F1i are calculated using eqn "16# with the elements of the matrix of sti}ness
corresponding to the i!th region[ If the value of mi is equal to zero\

u � rt"i# "A0i¦A1i ln r# "29#

where

t"i# �"0−F0i#:1 "20#

The stresses within the i!th region where radial displacements are given by eqn "17# are]

sr � ðC00"i#m"i#¦C01"i#ŁA0ir
m"i#−0¦ðC00"i#n"i#¦C01"i#ŁA1ir

n"i#−0

su � ðC10"i#m"i#¦C11"i#ŁA0ir
m"i#−0¦ðC10"i#n"i#¦C11"i#ŁA1ir

n"i#−0 "21#

where the elements of the matrix of sti}nesses are identi_ed with the i!th region[ Expressions for
the stresses corresponding to the radial displacement given by eqn "29# are omitted for brevity[

Consider the case where 9 ³ j ³ 9[88 along the boundary of the hole[ The solution should begin
at this boundary "r � a# where sr � 9 and a prescribed value of the circumferential stress su � S
can be identi_ed with the e}ective stress within the adjacent innermost region[ The value of this
stress may vary within the range prescribed by inequality "09#[ Then the martensitic fraction
corresponding to the innermost region is calculated by eqn "5#[ Now the sti}ness within the region
can be speci_ed[ The constants of integration A00 and A10 "i � 0# in eqn "21# are determined from
the boundary conditions for the stresses at r � a[

At the boundary of the second region "i � 1#\ r � a¦Dr\ the stresses sr and su are known from
the solution for the _rst region[ These stresses can be used to specify the e}ective stress within the
second region[ Then the martensitic fraction and the elements of the matrix of sti}nesses are found[
Finally\ the constants of integration A01 and A11 "i � 1# are determined from the radial stress and
displacement continuity conditions at r � a¦Dr[

The process described above should be continued until the martensitic fraction is equal to zero[
This determines the inner boundary of the region of pure austenite[ Within this region\ the classic
elasticity solution is valid[ The constants of integration can be speci_ed from the continuity
condition for the radial stress and displacement along the inner boundary of the region[ Then the
value of the external stress can be determined as the value of the radius approaches in_nity[ This
stress represents the load that causes the prescribed value of the circumferential stress at the
boundary of the hole[

Note that this solution is based on the assumption that the innermost region contains both
martensite and austenite[ In the case where the material is completely converted into martensite
within the region adjacent to the hole\ the stresses in this region can be determined from the
solution of the elastic problem with the boundary conditions sr � 9\ su � S at r � a]
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Fig[ 2[ The outer radius of an annular plate that is completely converted into martensite versus the magnitude of the
tensile radial stress[ Curve 0 ] T � 49>C\ curve 1 ] T � 39>C\ curve 2 ] T � 29>C[

sr � Sð0−"a:r#1Ł:1

su � 1Sð0−"a:r#1Ł:1 "22#

Obviously\ this solution converges to the classical result\ if the entire plate material is in the
martensitic phase[

The equation for outer boundary of the pure martensite region is determined from eqns "8# "22#
and inequality "09# as

S
1

ð0¦2"a:r#1Ł0:1 � dM"ln 9[90:bM¦T−MS># "23#

The results in Fig[ 2 represent the external radius of a _nite annular plate completely converted
to martensite as a result of the radial tensile stress sr � s applied along the outer boundary[ A
complete conversion is achieved when j � 9[88 at the outer boundary r � rm[ The nondimensional
variable S is de_ned as in eqn "02# and Rm � rm:a[ As is shown in Fig[ 2\ the outer radius of the
plate increases when temperature decreases\ as could be expected[

1[2[ Exact solution

As follows from the solution in the regions of pure martensite and austenite\ the ratio of the
radial to circumferential stress is given by the same function of the radius\ i[e[

R � sr:su � ð0−"a:r#1Ł:ð0¦"a:r#1Ł "24#

Considering that the regions of pure martensite and austenite encompass the region of mixed
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martensite and austenite\ it is logical to assume that the ratio "24# is not violated within the latter
region[ This assumption makes an exact solution of the problem possible\ as shown below[

Substitution of the circumferential stress from eqn "24# into the equilibrium eqn "12# and a
separation of variables yields

dsr:sr � 1a1dr:"r2−a1r# "25#

The result of integration is]

sr � exp "C0−ln ðr1:"r1−a1#Ł# "26#

where C0 is a constant of integration[
Now the solution is obtained as follows[ The e}ective stress along the boundary of the region

of pure martensite\ i[e[ s"rm#\ can be determined from the right side of inequality "09#[ Combining
eqns "8# and "24# one obtains the corresponding radial stress]

sr "rm# � s"rm#ð0−"a:rm#1Ł:ð0¦2"a:rm#3Ł0:1 "27#

Now the constant of integration C0 can be speci_ed from eqn "26# at r � rm[ For each value of
the radius r × rm\ the radial stress is given by eqn "26# and the circumferential stress can be
determined from eqn "24#[ The e}ective stress is subsequently found from eqn "8#[ When the
e}ective stress is equal to the value given by the left side of inequality "09#\ the material is in the
austenitic phase[ The subsequent stress distribution should be based on the elastic solution for the
austenitic material[

Note that the solution of the stress problem discussed in this section does not involve a reference
to a material constitutive law\ except for the nucleation criteria used to specify the boundaries of
pure martensite and austenite[ This implies that the distribution of radial and circumferential
stresses as well as the e}ective stress are not a}ected by the temperature!induced martentsitic
transformation[ However\ this transformation a}ects the material properties and therefore its
sti}ness and strength[ De_ning displacements in the plate may be important only if boundary
conditions are formulated in terms of displacements "kinematic boundary conditions# what is not
the case in the present problem[ However\ it may be important to know the martensitic fraction in
the most vulnerable area of the plate\ i[e[ in the vicinity of the hole[ Accordingly\ it is important
to consider a situation where the material around the hole experiences a partial transformation[
Then the knowledge of the martensitic fraction at r � a becomes critical to estimate the strength[

The problem of the stresses and strength for a plate with a region of partially transformed
material adjacent to the hole boundary is solved as follows[ Combining a version of eqn "27# where
rm is replaced with ra and the _rst eqn "00#\ one obtains

s � sð0¦2"a:ra#3Ł−0:1 "28#

This equation can be used to calculate the value of the external stress corresponding to the e}ective
stress that causes transformation at r � ra[ Of course\ the latter stress is found from "09#[

The value of the constant of integration C0 can be speci_ed from eqn "26# where r � ra and the
stress sr corresponding to the e}ective stress at this location is obtained from eqn "27# where rm is
replaced with ra[ Now the radial stress at a ³ r ³ ra is determined from eqn "26#[ The corresponding
values of the circumferential and e}ective stresses can be obtained from eqns "24# and "8#\
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Fig[ 3[ Distributions of nondimensional e}ective stresses in a plate at T � 29>C[

respectively[ Finally\ the martensitic fraction is calculated from eqn "5#[ Note that the cir!
cumferential stress obtained from eqn "24# has a singularity at r � a[ However\ the stress con!
centration factor is still equal to 1\ i[e[ the exact value of this stress can be predicted[

Results generated using the procedure outlined above are presented in Figs 3 and 4 for a plate
with the reference "stress!free# temperature equal to 29>C[ At this temperature\ the range of

Fig[ 4[ Distribution of the martensitic fraction in a plate at T � 29>C[ Case 0 ] s � 61[478 MPa\ case 1 ] s � 51[568 MPa\
case 2 ] s � 41[873 MPa[
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Fig[ 5[ Contours of constant values of the martensitic fraction at T � 29>C and s � 61[478 MPa[ The outer concentric
circle corresponds to the boundary between the regions of pure and partially transformed austenite[ The inner circle
"boundary of the hole# corresponds to j � 9[66[ The increments of the martensitic fraction between the circles are equal
to 9[00[

stresses corresponding to the martensitic transformation is 68[0 ³ s ³ 171[4 MPa[ Three cases are
considered corresponding to various external stresses[ The nondimensional e}ective stressÐstrain
curve is una}ected by the magnitude of the external load "of course\ the absolute values of stresses
increase for larger values of s#[ However\ a larger percentage of material along the boundary of
the hole is transformed into martensite as a result of higher external stresses[ This implies a lower
strength of the material and a higher ~exibility of the plate[

It is interesting to consider variations of the martensitic fraction with the radial coordinate[
According to Fig[ 4\ the martensitic fraction seems to be an almost linear function of the coordinate\
with the exception corresponding to small values of this fraction[ This is also re~ected in Fig[ 5
where the contours of constant values of the martensitic fraction with an increment equal to 9[00
are at an almost equal distance from each other when the value of the fraction exceeds 9[22[
However\ at smaller values of the martensitic fraction\ the distance between the contours increases
re~ecting an in~uence of the adjacent region of pure austenite[

2[ Conclusions

The analysis of the stress distribution and the phase transformation in a SMA plate with a
circular hole subjected to biaxial tensile stresses is presented in the paper[ The solution is based on
a two!dimensional version of the Tanaka constitutive theory and the assumption of plane stress[
The boundaries of the regions of pure austenite\ mixed martensite and austenite and pure martensite
are analytically evaluated[ It is shown that the region of pure austenite expands toward the hole\
if temperature increases[ In another example\ an annular plate subjected to tensile radial stresses
along the outer boundary is considered[ The analysis is concerned with the case where the plate
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material is completely converted into martensite under the load[ It is shown that the radius of the
plate that is completely converted into martensite increases as temperature decreases[

A closed!form solution is obtained by subdividing the plate into annular regions of constant
e}ective stress and martensitic fraction[ An exact solution can be obtained within each region
and the constants of integration are subsequently evaluated from the boundary and continuity
conditions[

An exact solution of the problem is obtained by assumption that proportional loading is
dominant throughout the entire plate[ This implies that the ratio of the radial!to!circumferential
stress in the region of a partially transformed material is governed by the same law as in the regions
of pure martensite and austenite[ The solution of the stress problem that is observed in this case is
una}ected by the stress!induced martensite[ However\ the martensitic fraction that is determined
from the solution governs the properties of the material around the hole\ i[e the strength of the
plate[ Accordingly\ higher external stresses result in a more ~exible material around the hole and
a lower strength[
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